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Abstract. Domain walls, arising from the spontaneous breaking of a discrete symmetry, can
be coupled to charge carriers. In much the same way as the Witten model for a superconducting
cosmic string, an investigation is made here into the case ofU(1)×Z2 → U(1), where a bosonic
charge carrier is directly coupled to the wall-forming Higgs field. All internal quantities, such
as the energy per unit surface and the surface current, are calculated numerically to provide the
first complete analysis of the internal structure of a surface current-carrying domain wall.

1. Introduction

Domain walls [1, 2] can arise in various grand unified theories (GUT) whenever a discrete
symmetry is broken by means of a Higgs field. Because they have immediately been shown
to induce a cosmological catastrophe [1] even if they appear in a very late phase transition,
their internal structure has not yet been studied in much detail, since it was widely believed
that they could not have survived until now. Indeed, with an energy per unit surface of the
order of the cube of the symmetry-breaking energy scaleη say, a single wall crossing the
universe, even withη as low asη ∼ 100 GeV, would produce an enormous overdensity
�wall ∼ 108, or, in the case where only small balls were to survive, very large anisotropies
in the cosmic microwave background radiation would be induced which are not observed
[2]. Hence, if stable walls are to exist in a theory, one must have an inflationary period
between the time they were formed and now.

The general belief nowadays concerning domain walls, assuming they were ever
produced at all, is examplified by the Peccei–Quinn phase transition [3], whose cosmological
relevance notably for the axion problem is still the subject of open discussion [4]. The idea
is that even though walls could have been formed, the corresponding phase transition would
have been preceded by a string forming transition in such a way that the domain walls would
be bounded by strings [5]. In such a framework, all walls would have had a finite size, huge
surface tension, and would have evaporated in less than a Hubble time, thereby effectively
solving the problem. It could therefore appear that studying their internal structure is indeed
pointless.

However, just as in the case of cosmic strings, the situation could be rather different
if domain walls were to have the ability to carry some sort of charge. The first immediate
effect that has to be considered is that a Bose condensate, in order to be stable in the wall,
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must lower the total energy density. It has been found that this is indeed the case [6], and in
fact the energy per unit area in the model we are about to investigate can be made arbitrarily
small for some values of the microphysical parameters. This allows a way to accommodate
domain walls and cosmology without requiring an inflation period and it should thus be
sufficient to justify a deeper analysis of domain walls’ internal structure.

Another effect of the currents is similar to what happens in cosmic strings. In this case,
a current induces a breaking of the Lorentz symmetry along the worldsheet, so that one can
consider rotating loops (called vortons [7] because of their particle-like properties, or rings
[8]). The point is that cosmic strings are believed to scale (see [2] for a recent review)
because the network of string is dominated by the loops, which eventually gravitationally
radiate all their energy away. When a current is present, these loops might reach equilibrium
configurations [7, 8] whose classical stability was recently discussed [9, 10] with the result
that if no quantum instability exists, the scaling is spoiled and they could easily overfill the
universe unless they were produced at a very low energy scale (estimated at∼10 TeV).

Now if the strings bounding the walls were superconducting, the problem could in fact
be rather similar, the presence of a domain wall modifying the equilibrium configuration in
an unknown way, while presumably modifying the constraint. This issue, which can and
should be analysed in the framework of Carter’s formalism [11] for describingp-branes, is
still a completely open subject. Another difficulty can arise in the case where strings are
not current-carrying, but the wall itself is. Indeed, the point is, as before for the cosmic
string scenario, that the breaking of the Lorentz symmetry along the worldsheet, whatever
its intrinsic dimension, allows a definition of rotation, and eventually the recognition of
the existence of centrifugally supported states. Of course, it is not yet clear whether these
objects could be formed and reach stable states at all, and therefore their cosmological
relevance has not been established. However, in the purpose of studying these frisbee-like
configurations, it is necessary that one knows the relevant internal quantities such as the
energy per unit area and the surface tensions: they are explicitly calculated in the present
article.

Another point to be noted is that domain walls usually appear at the phase transition
in the form of closed surfaces that would be expected in a standard nonconducting case
to decay very rapidly because of the surface tension. However again, as with strings, the
presence of currents can change this situation drastically. Indeed, during the collapse, the
charge trapped on the surface can redistribute itself in such a way as to provide an effectively
repulsive interaction between the different parts of the wall, thereby opening the possibility
that equilibrium configurations appear, with obviously the same problem as in the string–
vorton case. Moreover, contrary to the string case, if these last configurations turned out
to be unstable and likely to collapse, then one might end up with non-topological soliton
configurations [12] which would be formed with a very high charge and therefore would
not evaporate [13] and could thus yield a cosmological catastrophe [14]. This is at present
an open question.

It may seem that coupling charged (or hypercharged) particles to a domain wall forming
Higgs fields is a bit arbitrary, but in view of the fact that most topological defects are
predicted to form in various GUT models where the number of degrees of freedom, including
scalar, vector and fermion fields is huge, and where the couplings are almost unrestricted,
it seems fairly plausible. The purpose of this article is thus to present a toy model, similar
to the Witten bosonic model [15] for superconducting cosmic strings, where the symmetry
breaking scheme is simplyU(1) × Z2 → U(1). This model, much like the Witten model,
is expected to yield qualitatively relevant results. The work is arranged as follows. After
presenting the actual model in the first section, we investigate the microscopic structure of
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such a wall and end up by dealing with the above-mentioned integrated internal quantities,
namely the energy per unit area, the surface tensions as well as the surface current. The
equation of state, relating these quantities, is then computed numerically from the solution of
the field equations and is shown to share most of the superconducting cosmic string equation
of state properties [16], and in particular the existence of a phase frequency threshold, which
is discussed in some length at the end of the paper. This study of a domain wall model
thus sheds new light on the general knowledge of current-carrying topological defects by
showing, for instance, that a generalization of the string properties in an arbitrary number
of dimensions is possible, which in turn gives a new understanding of these string features.
With this idea in mind, we end this article by a derivation of the divergent behaviour of the
timelike component of the current as a function of the topological defect internal dimension,
thus generalizing previous results [16, 17] to arbitrarily dimensioned topological defects.

2. Wall model

Domain walls form whenever a discrete symmetry is spontaneously broken. The simplest
way to achieve that is to break aZ2 symmetry by means of a scalarφ whose vacuum
expectation value shall be taken as〈0|ϕ|0〉 = ±η, with η the energy scale of symmetry
breaking. This Higgs field may be coupled with hypercharge-carrying fields which we
approximate [15] by a single complex scalar field6 whose vacuum dynamics we require
to be invariant under someU(1) phase transformation group. ThisU(1) − 6 field is not to
be mistaken with any string forming field: even though one might be interested in frisbee
configurations later on, with strings bounding the wall currently under investigation, it must
be emphasized that in general the coupling terms between the wall and the string fields
will be of a different kind than that studied here. In much the same way as was done
for current-carrying cosmic strings [16, 17], we neglect any long range interaction and thus
assume a globalU(1) symmetry [16], thereby emphasizing the actual dynamics of the wall,
assuming charge-coupling corrections to be negligible, as was shown to be the case for
superconducting cosmic strings [17]. The Lagrangian we shall start with is therefore

L = − 1
2|∂µϕ|2 − 1

2|∂µ6|2 − V (ϕ, 6) (1)

with the general interaction potential given by

V (ϕ, 6) = λφ

8
(ϕ2 − η2)2 + f |6|2(ϕ2 − η2) + m2

σ

2
|6|2 + λσ

4
|6|4. (2)

The dynamics given by this Lagrangian includes existence of domain walls, i.e. solutions
of the field’s equations that separate domains where〈0|ϕ|0〉 = +η from regions where
〈0|ϕ|0〉 = −η, and on which therefore〈0|ϕ|0〉 = 0. From now on, we shall simply writeϕ
for 〈0|ϕ|0〉. The wall solution will be a stationary solution, with the wall locally identified
with the (x, y) plane, the various field amplitudes depending only on the thirdz-coordinate.
Note that this choice of symmetry is consistent whenever the characteristic wall curvature
is negligible compared with the thickness, a hypothesis whose validity would cease to be
true for a non-topological soliton [12].

Our ansatz is thus

ϕ = ϕ(z) and 6 = σ(z) exp[i(kx − ωt)] (3)

where we have chosen the frame where the spacelike component of the current, defined
below, is directed along thex direction (this form (3) for6 can always be attained locally
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by means of a simple rotation in the wall plane). The conserved current, derived as the
Noether invariant under phase transformations, is

Jµ = i

2

δL
δ∂µ6

6∗ + c.c.= i

2
6

↔
∂µ 6∗ (4)

which, with (3) plugged in yields

Jµ = (kδµx − ωδµt )σ
2(z). (5)

The field equations derived from the Lagrangian (1) under the assumptions (3) read

d2ϕ

dz2
=

[
λφ

2
(ϕ2 − η2) + 2f σ 2

]
ϕ (6)

d2σ

dz2
= [w + 2f (ϕ2 − η2) + m2

σ + λσσ 2]σ (7)

in which we have defined the state parameter

w ≡ k2 − ω2 (8)

whose sign reflects the spacelike or timelike character of the current given above by (5)
since

JµJµ = wσ 4(z) (9)

and in the chosen conventions of (1), the Minkowski metric isηµν = Diag{−1, 1, 1, 1}.
The possibility of a current in the wall can be seen in two ways. First, one can notice

that the minimum of the potential, in the actual vacuum, is given by

ϕ = ±η and 6 = 0 (10)

and that this minimum is shifted in the wall whereϕ = 0 to

λσ |6|2 = 2f η2 − m2
σ (11)

so a condensate may exist provided

m2
σ 6 2f η2. (12)

Another way to realize that a condensate will in fact appear [15] in the wall consists in
assuming no condensate (6 = 0), and solving the perturbative equation for6 in the domain
wall background. For6 = 0, the solution of (6) is known:

ϕ = η tanh( 1
2

√
λφηz) (13)

and setting a perturbation in the form6 = σ(z)eiωt into (7) yields the one-dimensional
Shr̈odinger equation forσ

−d2σ

dz2
+ V(z)σ = ω2σ (14)

where the potential

V(z) ≡ −2f η2[1 − tanh2( 1
2

√
λφηz)] + m2

σ (15)

is negative-definite when the condition (12) holds. Hence, under this condition,6 evolves
in an attractive potential well, with negative eigenvalues forω2. Therefore, there exists
unstable modes and a condensate forms.
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3. Current quenching and phase frequency threshold

In order to analyse the internal structure of such a current-carrying domain wall, it turns
out to be convenient to introduce a set of dimensionless functions and variablesζ , X, Y ,
w̃ and{α1,2,3} as

ϕ(z) = ηX(ζ ) (16)

σ(z) = mσ√
λσ

Y (ζ ) (17)

with

ζ = √
λφηz. (18)

The state parameter is similarly rescaled into

w = λφλση4

m2
σ

w̃ (19)

and provided we redefine the arbitrary underlying parameters as [16, 17]

α1 = m2
σ

λσ η2
α2 = f m2

σ

λφλση2
and α3 = m4

σ

λφλση4
(20)

we get the very simple set of ordinary differential equations

X′′ = X[ 1
2(X2 − 1) + 2α2Y

2] (21)

α1Y
′′ = Y [w̃ + 2α2(X

2 − 1) + α3(Y
2 + 1)] (22)

where a prime denotes a derivative with respect toζ .
Two constraints on these parameters arise from the requirement that the theory

be physically meaningful and consistent with currents flowing along the wall. The
condition (12) for instance, reads in terms of these parameters

α3 6 2α2 (23)

while demanding that the energy of the wall configuration (ϕ = 0 and6 6= 0) be greater
than the actual surrounding vacuum configuration (ϕ = η and6 = 0) implies

(α3 − 2α2)
2 6 1

2α3. (24)

The first of these constraints in fact means that there exists a spacelike saturation current
which cannot be exceeded. To see that this is indeed the case, let us perform an expansion
of X andY close to the wall whereζ � 1, in the form [16]

X ∼ x1ζ + bζ 3 and Y ∼ y0 − aζ 2 (25)

which satisfy the boundary conditions on the wall worldsheet, and in particular regularity
of the 6 field [which accounts forY ′(0) = 0]. Plugging back into (21) and (22) gives

b = x1(2α2y
2
0 − 1

2) (26)

and

a = y0

2α2
[2α2 − w̃ − α3(y

2
0 + 1)], (27)

so that because the condensate is actually at its maximum atz = 0, one hasa > 0, which
means

w̃ 6 2α2 − α3. (28)
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Thanks to the requirement (23), we see that the limit applies only in the spacelike current
case wherew̃ > 0, and it reflects the fact that for̃w = 2α2 − α3, one hasy0 = 0, and
therefore no condensate, hence no current. So there exists a value of the state parameter
above which the current quenches to zero.

On the other hand, investigating the large-ζ behaviour of equations (21) and (22) yields
the following asymptotics:

1 − X ∼ exp(−ζ ) (29)

as expected from the knowledge of the true solution (13) in the decoupled case (Xα2=0 ∼
1 − 2eζ ), and

Y ∼ exp

−
√

w̃ + α3

α1
ζ

 (30)

for positivew̃ + α3,

Y ∼ cos

(√∣∣∣∣ w̃ + α3

α1

∣∣∣∣ζ + δ

)
(31)

for negativew̃ + α3, with the specialw̃ = −α3 case leading to

Y ∼
√

2α1

α3
ζ−1. (32)

Thus, exactly as in the case of a current carrying cosmic string, there exists a phase frequency
threshold given bỹw = −α3, orω = mσ , above which the integral of the current (5) from the
sheet to infinity diverges. This is therefore not a mechanism depending on the dimension
of the topological defect under consideration, and can be interpreted as charge carrier’s
evaporation from it [16]. This phase frequency threshold is discussed more thoroughly at
the end of the following section where integrated quantities are explicitly calculated.

4. Macroscopic quantities

For most of the cosmologically relevant calculations with topological defects, it is convenient
to consider them as infinitely thin, and for that purpose, it is necessary to know the stress–
energy tensor and the current as line integrals starting from the wall’s worldsheet to infinity.
For instance, the integrated current reads

C ≡ 2
∫

dz
√|JµJµ| = 2

√
|w|

∫
dz σ 2(z)

= 2η2√α1|ν̃|
∫

dζY 2(ζ ) (33)

where we have definedν = Sign(w)
√|w| and rescaled it according to equation (19); the

additional factor of 2 is here to account for both sides of the wall. The parameterν, being
essentially identifiable ask or −ω, is readily interpreted and has thus been used as the
relevant parameter for the plots presented below.

Another obviously very useful quantity for a macroscopic description of a surface-
current-carrying domain wall is its stress–energy tensor

T µν = −2gµαgνβ δL
δgαβ

+ gµνL (34)



Surface current-carrying domain walls 5131

which, in the case under consideration, needs to be diagonalized. It is worth noting at this
point that even though the existence of a current in the wall does indeed break the Lorentz
invariance along the worldsheet, thereby raising the stress-energy tensor’s degeneracy, it
does so through the introduction of one privileged direction. Hence, just as in the string’s
case, there can be only two different eigenvalues, namely the energy per unit areaU , and
the surface tensionT . The resulting stress-energy tensor then reads

T(<0) ≡


U

−T

−T

0

 (35)

for a timelike current (for which the spatial isotropy is left unbroken), whereas the spacelike
current case similarly yields

T(>0) ≡


U

−U

−T

0

 . (36)

We shall now calculate explicitly these eigenvalues in the specific case (1) under
consideration, and for that purpose, we perform a Lorentz boost in thex-direction in such
a way that the phase of the current carrier6 readskz or −ωt . In this frame, in which we
shall remain for now on except when it comes to the lightlike case, one has the energy per
unit surface

U = 2
∫

dz Ttt = √
λφη3

∫
dζ [X′2 + α1Y

′2 + |w̃|Y 2

+ 1
4(X2 − 1)2 + 2α2Y

2(X2 − 1) + α3Y 2( 1
2Y 2 + 1)] (37)

the surface tension parallel to the current

T‖ = −2
∫

dz Txx = √
λφη3

∫
dζ [X′2 + α1Y

′2 − |w̃|Y 2

+ 1
4(X2 − 1)2 + 2α2Y

2(X2 − 1) + α3Y 2( 1
2Y 2 + 1)] (38)

the surface tension orthogonal to the current

T⊥ = −2
∫

dz Tyy = √
λφη3

∫
dζ [X′2 + α1Y

′2 + w̃Y 2

+ 1
4(X2 − 1)2 + 2α2Y

2(X2 − 1) + α3Y 2( 1
22Y 2 + 1)] (39)

while the last integrated component provides a very useful numerical constraint as we shall
see shortly because

Tz = −2
∫

dz Tzz = √
λφη3

∫
dζ [−X′2 − α1Y

′2 + w̃Y 2

+ 1
4(X2 − 1)2 + 2α2Y

2(X2 − 1) + α3Y 2( 1
2Y 2 + 1)] (40)

should in fact vanish identically. This can be checked almost immediately when no
condensate is present since in that case, one hasX0 = tanhζ/2, so thatX′

0 = − 1
2(X2 − 1)

which in turn implies

T (0)
z = √

λφη3
∫

dζ [−X′2 + 1
4(X2 − 1)2] = 0 (41)

while the general case gives, with the ansatz (3)

∂xT
xx = ∂yT

yy = ∂tT
tt = 0
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and finally, conservation of the stress-energy tensor∂µT µν = 0 yields

∂zT
zz = 0. (42)

But the boundary conditions one must use are such that asymptotically, the fields take their
vacuum values, so

lim
z→∞σ = lim

z→∞∂zσ = lim
z→∞∂zϕ = lim

z→∞(ϕ2 − η2) = 0

so limz→∞ T zz = 0 which, with (42) impliesT zz = 0. Hence, (40) provides a constraint on
the fields, namely

X′2 + α1Y
′2 = w̃Y 2 + 1

4(X2 − 1)2 + 2α2Y
2(X2 − 1) + α3Y

2( 1
2Y 2 + 1) (43)

which is used for numerical purposes since it gives the value of the derivative ofX near
the origin, i.e.x1 with the notation of (25), as a function of the6 field’s VEV y0, with

x2
1 = 1

4 + y2
0[α3(1 + 2y2

0) − 2α2 − w̃]. (44)

Note first that we recoverx2
1 = 1

4 in the non-current-carrying case, again in agreement with
the corresponding known analytic solution, and second that (43) is not a trivial constraint:
as numerical integration reveals, the functionalU [X(ζ), Y (ζ )] has two extrema depending
on the field configuration, one of which corresponds to an unphysical maximum, whereas
the second is indeed a minimum satisfying (43). The numerical program developed for
solving equations (21) and (22) therefore used the constraint (43) by fixing the parameters
at the origin with (44). Two criteria for ensuring the convergence to the actual physical
solution were thus considered, namely that the solution should indeed be one and therefore
should extremizeU , and the vanishing ofTz.

A final consideration permits an evaluation of the accuracy of the numerical results
thereby obtained, and it is the final point on theν line calculated for a spacelike current.
This point corresponds tõw = 2α2 − α3 which, according to (27) and the discussion
following it, has no current at all. In that case, all the integrals of equations (37)–(39) are
equal toU0, with

U0 = √
λφη3

∫
dζ [X′2

0 + 1
4(X2

0 − 1)]

= 2
√

λφη3
∫

dζ X′2
0 (45)

when one takes the solutionX0 = tanhζ/2, and this is

U0 = 2
√

λφη3
∫

X′ dX = −√
λφη3

∫ 1

0
(X2 − 1) dX

= 2
3

√
λφη3. (46)

The condensate must therefore respect

Uσ√
λφη3

6 2

3
(47)

in order to be stable against charge carrier evaporation, with the equality obtained in the
limit w̃ → 2α2 − α3. This in fact also limits the range of variation ofw for a timelike
current for it seems doubtful that a state havingUσ > U0 could survive in practice.

The case of a lightlike current shares with the non-current-carrying wall the property
that the stress–energy tensor’s eigenvalues are strictly equal. It can usually be set, after
diagonalization forJµJµ 6= 0, as

T µν = Uuµuν − T‖xµxν − T⊥yµyν (48)
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with uµ the timelike eigenvector (uµuµ = −1) and xµ, yµ the spacelike eigenvectors
(xµxµ = yµyµ = 1, andxµyµ = 0), but for a lightlike current, it reads

T µν = Uuµuν − T‖xµxν − T⊥yµyν − 1
2(uµxν + uνxµ)ω2

∫
dz σ 2(z) (49)

where we have set6 = σ(z) exp[iω(t − x)]. Upon diagonalization, this reads

T µν = T‖(v
µ
−vν

− − v
µ
+vν

+ − yµyν) (50)

with v
µ
± = 1

2(xµ ± uµ) the lightlike eigenvectors ofT µν , and T‖ as given by (39) with
w̃ = 0.

Let us investigate more thoroughly the spacelike and timelike cases. The timelike case
is characterized, as exemplified in (35), by the isotropy of the purely spatial part ofT µν ,
i.e. T‖ = T⊥ ≡ T . As in the string case, one has the Legendre-like relation

U − T = −νC ν 6 0 (51)

and the now standard formalism developed by Carter [11] applies straightforwardly. The
case of a spacelike current is slightly more involved and perhaps requires more thought for
each particular cosmologically interesting configuration studied because the spatial isotropy
of the surface is no longer present since the current picks a privileged spatial direction in
the worldsheet. However, equations (36), (37) and (39) show that yet another simplification
arises from the fact thatU = T⊥, i.e. the purely spatial component of the stress-energy
tensor in the direction parallel to the current flow is the energy per unit surface. Setting
T = T‖, a relation similar to (51) is obtained in the form

U − T = νC ν > 0 (52)

which can be understood in terms of duality between spacelike and timelike currents [11].
The relevant rescaled integrals are displayed in the figures.

Figure 1 represents the energy per unit area and the surface tensions as functions of the
rescaled state parameterν̃ for a specific set of parameters{αi} (chosen to yield a generic
kind of result as well as giving measurable effects), with curve (a) showing the variations
of U(ν̃) and T (ν̃) for a spacelike current-carrying wall having a positive state parameter
ν̃ > 0, while curve (b) representsU(ν̃) andT (ν̃) for a timelike current-carrying wall with
ν̃ > 0. Similarly, in figure 2, curves (a) and (b) show the amplitude of the current (5)
in the magnetic and electric regimes, respectively. As might have been anticipated, these
figures are very much like those obtained for a neutral current-carrying cosmic string [16],
at least in the classically stable part of the equation of state, which is definable through the
requirement that the soundlike perturbation squared velocityc2

L = −dT/dU be positive.
Thus, the approximate analytic equation of state proposed in [18] should also be useful in
this domain wall context. Therefore, most of the current-carrying domain wall properties
are essentially similar to the string properties.

Finally, let us remark on the following important mathematical property of the surface
current-carrying domain wall. As is the case for a superconducting cosmic string, it can
be seen that there exists a phase frequency threshold [16] given byw = −m2

σ at which
point the current (33) diverges. For the cosmic string case, the first-order pole behaviour
Cstring ∼ (w + m2

σ )−1 was found [16] whereas the wall case yieldsCwall ∼ (w + m2
σ )−1/2.

This is because in both cases, denoting byd the co-dimension of the topological defect, i.e.
2 for a string and 1 for a wall in a four-dimensional background, the current carrier field is
seen to satisfy (7) which, far from the topological defect, gives the relation

1dσ ∼ (w + m2
σ )σ (53)
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Figure 1. Energy per unit areaU (full curve) and surface tensionsT>0 = T‖ and T<0 = T⊥
(broken curves) as functions of the rescaled state parameterν̃ and in units of

√
λφη3; (a) is

for the timelike casẽν 6 0, while (b) is for the spacelike rangẽν > 0. The calculation is
made for a quite extreme set of parameters for which the minimum energy (forν̃ = 0) is much
smaller than the non-current-carrying configuration energy [6]. It should be noted that even for
this extreme set of parameters, the tension remains positive in the range (b), providing a hint
that the ‘no-spring conjecture’ [17] may apply independently of the defect dimension. In the
timelike current regime, the calculation is stopped when the tension becomes negative in which
case the wall is unstable [9].

Figure 2. Integrated value of the surface current in units ofη2 for the same variation ranges as
in figure 1 as a function of̃ν. The phase frequency threshold divergence in the electric regime
(a) is more visible than in figure 1, and the current saturation phenomenon for the magnetic
regime (b) that exists in string models of the same kind [16] is seen to be present as well in the
wall case.

where1d stands for the Laplacian ind dimensions: this is simply d2/dz2 in the wall case
under consideration here, and d2/dr2 + d−1

r
d/dr in the general case withr the ‘radial’

distance to the defect’s core. Settingχ = kr, with r ≡ z in our wall case andk2 = w+m2
σ ,

one can extractσ as a function ofk since for k 6= 0, equation (7) (i.e. equation (53))
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transforms into

d2σ

dχ2
+ d − 1

χ

dσ

dχ
= σ(χ) (54)

whose solution cannot depend onk.
The solution to (54) is well known:

σ ∼ Aχ1−d/2K0(χ) (55)

with K0 the Bessel function of zeroth order whose asymptotic behaviour is given by
K0(χ) ∼ exp(−χ)/

√
χ . Thus, one finds the general phase frequency threshold behaviour,

up to a finite part (corresponding to the fact that one has to integrate up to the point where
the approximation (53) becomes valid)

C ∝
∫

rd−1 dr σ 2(kr)

∝ 1

kd

∫
χK2

0(χ) dχ

∝ (w + m2
σ )−d/2 (56)

with d = 1 for a current-carrying domain wall,d = 2 for a superconducting cosmic string,
and d = 3 for a charged monopole in a four-dimensional background spacetime. It is in
fact possible to be slightly more precise concerning this divergence: the functionκ, defined
as [11, 15]

κ ≡ 2
dU

dw
= 2

∫
ddx⊥σ 2(x⊥) (57)

being proportional toC, also diverges, and it may be seen that, under the assumption that
y2

0 ∼ 2α2/α3 near the threshold (see [16] and (27))

κ = κf (w) + A
f η2

λσ

(w + m2
σ )−d/2 (58)

which is valid for various values of the co-dimensiond, with κf (w) the finite part ofκ
andA a pure number, calculable in principle by a matching of the asymptotic solution (55)
to the origin and depending ond. Note that the dimension of this functionκ is given
straightforwardly onced is known.
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